- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Asar, Anjali (1)
-
Balasubramanian, Ravi (1)
-
Bloch, Peter (1)
-
Fern, Xiaoli (1)
-
Grimm, Cindy (1)
-
Nishat, Nuha (1)
-
Scott, Garrett (1)
-
Soni, Paresh (1)
-
Swenson, Nigel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We present a method for classifying the quality of near-contact grasps using spatial metrics that are recoverable from sensor data. Current methods often rely on calculating precise contact points, which are difficult to calculate in real life, or on tactile sensors or image data, which may be unavailable for some applications. Our method, in contrast, uses a mix of spatial metrics that do not depend on the fingers being in contact with the object, such as the object's approximate size and location. The grasp quality can be calculated {\em before} the fingers actually contact the object, enabling near-grasp quality prediction. Using a random forest classifier, the resulting system is able to predict grasp quality with 96\% accuracy using spatial metrics based on the locations of the robot palm, fingers and object. Furthermore, it can maintain an accuracy of 90\% when exposed to 10\% noise across all its inputs.more » « less
An official website of the United States government

Full Text Available